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Abstract

In spite of the huge progress seen in the field of robotics, robot manipulation still stands as a great
challenge for the engineering community. We propose using the human manipulation of objects as a
basis for robot manipulation, applied through imitation learning. Considering that obtaining the data of
the human manipulation from video can add noise due to obstructions or simply due to the complexity
of a fully dexterous hand, we present the virtual environment as a better medium to collect data and
record the samples to be used for robotic imitation. The virtual environment will be interactable with a
glove with position sensors capable of fully capture the human hand movements in all its intricacy, and
vibrating plaques on the fingertips to simulate the touch of a virtual object (haptic feedback). For the
work we consider two experimental conditions: Presence vs. absence of haptic feedback while executing
grasps. With the samples recorded, the subconscious human mannerisms will be applied and tested on
a virtual hand using the output of neural networks, in particular, a recurrent neural network responsible
for the reaching portion of a task and another responsible for the remainder/manipulation portion of the
task, being the output followed switched from the reaching recurrent neural network to the manipulation
recurrent neural network when the object to interact is considered grasped. Both recurrent neural
networks will be trained with the recorded demonstrations, each with their respective portion, enabling
the robot to grasp objects successfully in most attempts. It will also be tested if the use of haptic feedback
actually leads to better demonstrations. We also aim to provide freely our dataset, to enable researchers
without the hardware needed to record demonstrations to test their own training algorithms.
Keywords: Robot manipulation, imitation learning, virtual environment, neural network

1. Introduction
Alongside with the advancements seen in the mod-
ern era of technology we see an investment in
the field of robotics, where the scientific commu-
nity aims to build robots capable of assisting the
common man on is daily life, from work to recre-
ational activities alike. For such a goal to be possi-
ble robots must be capable of doing a wide range
of tasks, i.e. to have a performance on par with its
human counterpart, or, ideally, surpassing it and its
limitations.

In this thesis we propose to develop a Virtual En-
vironment - VE where a human subject can use its
own real hands to control virtual hands in grasping
virtual objects. This will allow to capture the tra-
jectories and the contact points with the objects in
a much more precise and robust way than current
practices that use cameras, motion capture and in-
strumented objects. The acquired information will
be used to learn grasping skills from humans and
transfer these skills to robots with similar kinemat-
ics, i.e. humanoid hands robots.

1.1. Contributions
This work will add to the state of the art with the
introduction of our trajectory generation algorithm
with a 2-phases system, the addition of haptic feed-
back to the trajectory generation algorithm, the
testing in difference in quality of demonstrations
trained with and without haptic feedback present,
and by offering a public database of demonstra-
tions to aid researchers of this field of study.

2. Background
As the ability to grasp and manipulate objects,
making use of tools and all the plethora of activities
achievable with our hands is one of the most im-
pactful skills of mankind [8], it’s was expected that
the engineering community would gain a special
interest in making robots capable of mimicking our
finesse manipulating objects. The development of
techniques to teach robots to efficiently manipulate
objects has been a long and continuous process,
broad on the different ways the problem has been
approached.
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2.1. Approaches to Grasping
The literature presents a wide diversity of ap-
proaches for robot grasping, differentiating them-
selves by the knowledge of the object the robot is
trying to grasp [2], that is, if the object is known, fa-
miliar or similar to a known own, or completely un-
known. In our work we will deal with known/familiar
objects.

In terms of how the grasp on itself is constructed
the methods applied are more diverse, ranging
from physics-based to human-based, from grasp
patterns preprogrammed to developed in real time.
In general they fall on the one of the following
methodologies [2]:3-D mesh models and contact-
level grasping, learning from trial and error and
learning from humans.

With 3-D mesh models and contact-level grasp-
ing a model of the object is created and we try
to deduce how it would physically make sense to
grasp the object, with learn from trial and error we
have a AI repeating attempts to grasp the object
without former knowledge, learning with each fail-
ure, and with learning from humans we attempt
to port the knowledge of grasp of humans to the
robots.

In this work we will follow the approach of learn-
ing from humans, in particular the particular ap-
proach of behavioural cloning, where a human
demonstrates a task and the robot tries to repli-
cate it, as it has shown promising results in previ-
ous works [9] [7] [5].

2.2. Algorithms
To enable an AI to understand demonstrations and
try to replicate tasks based on them, an algorithm
or system must be in place.

A common method is to use a NN, an algorithm
based on training from examples. Of course NNs
are a diverse method, and a number of different
types of NNs have already been used to train ma-
nipulation tasks [9] [5] [6]. The simpler form is to
use a linear NN that predicts, from a stage of the
task, where the hand will go next, as seen in [9].
This carries the issues innate of non recurrent NNs,
and to circumvent them the authors have as input
of the NN not only the current stage/step, but also
the previous 4, to place the stage in time.

Alternatively, some other works had success
with recurrent NNs [5] [6], as these are prepared
to deal with temporal tasks. In particular, the most
commonly used type of recurrent NN used in this
kind of works is the LSTM, short for Long Short
Term Memory, as the use of memory cells makes
it ideal to reconstruct temporal tasks.

What distinguishes recurrent NNs from their lin-
ear counterparts and makes them more suitable to
temporal tasks is the presence of a loop (figure 1),

making the NN output dependent of the previous it-
erations. Due to this they have been a trend in the
fields of speech, language, image captioning [4],
among others, where the predictions need more
that the information of the current item (as an ex-
ample, to predict the next word in a sentence we
need not only the current word, but also some pre-
vious words of the sentence, to make some sense
of the sentence).

Figure 1: Diagram of a recurrent NN with X the input and h the
output [4]

Although simple recurrent NNs can solve se-
quence/time dependent problems they only func-
tion well for short term memory, that is, for prob-
lems that the do not need to remember information
for to long, as unused information tends to be dep-
recated due to their memory functions (the mem-
ory functions usually have a scaling function, for
example, a tanh function, and if they do not have a
system in place to decide which information is im-
portant, old information might be reduced to almost
null).

To solve this a subtype of recurrent NNs was in-
troduced, the LSTMs (short for Long Short Term
Memory), that has an added system to deal with
memory 2, allowing the LSTM to calculate and de-
duce which old information it will remember and
forget, solving the long term memory issue. The
main segment of the memory system is the cell
state, which carries the relevant memory between
iterations. To maintain the cell state, or memory,
other layers are included.

Figure 2: Diagram of an LSTM with X the input, h the output
and C the cell state [4]

Another method work worthy of mention is the
Markovian Decision Process, a method that, based
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on heuristics, from a current step has a number
of unequal probability next steps. Demonstrations
can be applied as training to give more weight to
certain next steps. Although a more difficult to ap-
ply method, it has also shown to be successful [7].

3. Implementation
In this work we will have a VE where we will record
demonstrations, using a glove with sensors, and
use this demonstrations as training for an AI to
try to perform autonomously these same tasks in
the VE. We will now explain how this was imple-
mented.

3.1. Virtual Environment
To perform the demonstrations, and observe the
reproductions, a simple VE was created. To avoid
filling the scene with distractions, the scene wasn´t
made to simulate a real place like a kitchen or a
workshop, consisting simply of a long table with the
objects needed for the tasks placed along it (Figure
3). The avatar, which only had the hand visible,
being the hand itself slightly translucent to permit
some vision through it, had the camera placed on
its head at eye level, slightly tilted down, as to look
at the table.

Figure 3: The VE table and objects

The virtual hand is controlled by a sensor glove,
capable of capturing the hand and finger move-
ments. Unfortunately the glove we used didn’t have
a sensor for measuring bigger lateral movements,
only 2 gyroscopes to record the angular position.
Some small movement could be deduced from the
values of the gyroscopes, but broad movements
were difficult and unreliable. Such problem was
solved with a simple script that enabled the move-
ment of the avatar with the WASD+QE keys to
move it in all 3 directions, moving the hand with
it, enabling the bigger translations of the hand. The
angular sensors of the glove on the hand and wrist,
as mentioned before, could be used to assert some
lateral movement of the hand, leading to a more
precise auxiliary to the keyboard imposed move-
ment. A example of how the VE was controlled in
real life can be seen in Figure 4.

Nonetheless, some previous works didn’t use
a headset and lead to favorable results, some of
them mentioned on the State of the Art, and, as
such, we believe that this setback doesn’t fault the
quality of our work.

Figure 4: Example of the VE control

3.1.1 Glove capture

Before starting on how the glove is recorded, it’s
important to understand how the glove is captured.
The glove, when connected, routinely sends data
packets to the computer about the values read in
its sensors. The one we used in particular included
in the data packets a integer for each of the fin-
ger sensors and some floats to represent the an-
gular position read on the gyroscopes. The sen-
sor integers are proportional to the corresponding
joint bending, so, as to realistically capture the po-
sition, a calibration function, recorded outside of
the demonstration, the values of each sensor for a
closed fist and an extended hand, representing the
minimal and max value of each finger bend. These
values were then used to convert the real-time read
value to the correspondent joint angle in degrees.
These were then applied to the object that corre-
sponded to that joint, rotating to the given value.
Some data packets were also sent to the glove to
activate the vibrating plate on the tip of each finger.

It’s important to note that gloves of similar func-
tion most likely work the same way, and the method
used can be performed with any other glove, but to
keep the explanation simple we might include de-
tails of our used glove architecture (as seen previ-
ously), from which the parallel work of other gloves
can be deduced by comparison.

Also to note that the lateral movement of the fin-
gers was observed to be minimal, and very rarely
independent (all the fingers separated and joined
simultaneously). To take advantage of this, the lat-
eral movement was applied as the mean of the val-
ues read from all non opposable fingers, reducing
the data size for the NN.

3.1.2 Object interaction

Having the glove fully captured it was next needed
to enable objects to be grabbed. This operation
took some iterations but the final version had sim-
ply the condition of object grabbed, that was veri-
fied if the thumb and at least one other finger was
touching the object, that when verified glued the
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object to the hand. While grabbed the remaining
fingers were glued to the object the instant they
touched it, to replicate the adjustment of the fin-
gers to the object. When the fingers were glued
to the object their sensor values were saved and if
it was verified that the sum of all touching fingers
opened more than a threshold, the object would be
dropped.

3.2. Demonstration Recording
When a demonstration starts the scene is set and,
to guarantee diversity on the demonstrations, the
object to interact with spawns at a random place in-
side a plausible area. We consider a plausible area
one that inserts some variance but doesn’t spawn
the object far enough that the task to be made is
so different the training method would have a hard
time considering it the same task. The form and
size chosen for this area is a square with a side of
about 25cm (this value is a approximation obtained
trough comparison of the size of the virtual objects
and examples of their real life counterparts sizes).
To better perceive this area Figure 5 has a visual
representation of it.

Figure 5: The object at the start of a demonstration spawns
with its center somewhere inside the red area

Now referring to the recording itself, a flag in-
dicates if the following demonstration is to be
recorded. If so, a new text file is opened and the
values of the demonstration will be written on the
file, being the data written the current values ob-
served in the demonstration. The current values
are written at a set interval of time (in our case at
every 0,2 seconds). The data recorded consists
of the scaled values indicating the bending of each
sensor and the relative spatial and angular position
between object and hand (as only these 2 objects
interacted this passes as a better way to save their
individual positions, reducing the NN entries by 7).
To tackle the problem that is relative angles quater-
nions were used, being that the relative position
was obtained by multiplying the quaternions of the
component (which in quaternions translates to ap-
plying an angle after the other), and deciphered by
the inverse operation, multiplying by the inverse.

The saved file, simple as it was, was also sub-
ject to an iterative process. Initially a single file

recorded the complete demonstration. Training the
NN we observed that some of the reproductions
nearly grabbed the object and, before the grasp
condition was achieved, the hand followed for the
manipulation part (at the time, lifting or rotating the
object), without the object in hand. On the suc-
cessful grasps the hand couldn’t move, as the rel-
ative position to the object was fixed due to the
grasp, which indicated a need for a different ref-
erential.

To solve this the demonstrations/reproductions
were segmented in 2 parts, each saved on a sepa-
rate file, initially the reaching part and, after a grasp
had been established, the manipulation part. The
manipulation part, to avoid the previous problem
of the static hand, used instead the relative posi-
tion of the object at the moment it was considered
grasped, allowing the hand to move freely relative
to those coordinates.

On the most recent iteration, to allow interaction
between objects, the manipulation segment used
as a referential for the hand the position of the ob-
ject to be interacted with (for example, a box for the
object to be dropped on).

3.2.1 Hands

To grasp the object 3 hand models were cre-
ated/inserted to the VE, one simplistic which we
call the Skeletal Hand (Figure 6(a)), and two others
that are virtual replicas of the real life robot hands
of Vizzy (Figure 6(c)) and ICub (Figure 6(b)), two of
the robots present in the ISR (Instituto Superior de
Robótica). Although the final tests only used the
Skeletal Hand, demonstrations were recorded and
saved in the database for public use.

To map the glove read values to the virtual hands
we used a similar system to all 3 hand models.
In terms of rotation and position we simply de-
duced them from the values read and place the
hand model with the deduced values. To map the
finger movements we had simply scaled the value
read from the sensor and applied it to the respec-
tive joint (for example, the value read from the sen-
sor goes from 0 to 1000, and the respective joint
can move from 0º to 90º, so if the sensor reads the
value 500 we would rotate the joint to 45º).

The kinematic limitations of the robot hands were
kept and dealt with by using the average of the read
sensors (For example, if a single motor controls
two joints we apply the average of the two joints
to both).

3.3. VE Structure
Having a detailed explanation of some particular
aspects of the VE we will now give a brief overview
of the VE. The explanation will be kept simple and
without details particular to the used Engine, Unity,
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(a) Skeletal
Hand

(b) ICub
Hand

(c) Vizzy
Hand

Figure 6: Hand Models

as the same process is believed to be possible to
replicate in other Engines.

In terms of objects they are placed along a ta-
ble. Some of the present objects 3d models were
obtained in Unity Asset Store, while others where
made from scratch. All the interactable objects are
tagged as such and have a script that randomizes
its position at the start of the runtime. The script
has some public variables to define the variance
in randomization, if the rotation is also randomized
and how much.

In terms of the hand(s) its object actually consist
of a bigger body, containing arms and head, but to
keep the image simple only the hand is visible. The
arms, although invisible, serve to, using the values
of the gyroscopes in the hand and wrist, to deduce
the spatial position of the hand (as the wrist gyro-
scope implies the forearm rotation and, being this
one dependent of the arm, a approximate position
of the hand is possible to be deduced. The head is
used simply to anchor the position of the camera.
A script is present in this body to, as mentioned
before, to mode with the ASDW+QE keys to move
the body sideways, front/back and up/down, mov-
ing the hand and camera along with it.

3.3.1 Database

The complete project of this work, and a collection
of manipulation tasks demonstrations, is available
to everyone in https://github.com/alexamor/Thesis.

The repository contains the Unity project where
the work was done, in particular, the VE consisting
of the table, objects and hands. Although originally
developed in Unity 2018 it was latter updated to
v2019.4 to ease the recording of demonstrations.

Some objects that weren’t used in the final
recordings are also present, as they were used in
initial parts of the project.

Besides the VE the used demonstrations are
also present which include:

• Demonstrations with Haptic Feedback - 200
demonstrations of each created task, with
haptic feedback enabled. These were the
demonstrations used to test the success-
rate of our method, with and without rotation
added, in the Experiments.

• Demonstrations without Haptic Feedback -
200 demonstrations of each created task, but
with haptic feedback disabled. These were
recorded to compare the quality of demonstra-
tions with and without haptic feedback. These
demonstrations were used for the comparison
between the presence and absence of haptic
feedback in the Experiments.

• Demonstrations with Robot Hands - 100
demonstrations for each possible task, using
both the Vizzy and iCub hand. Not all the
tasks were recorded with the robot hands, as
some were impossible due to the kinetics’ lim-
itations and proportions of the robot hands.
These demonstrations were not used for any
test, being their main purpose to complement
the database.

• Miscellaneous Demonstrations - Some mis-
cellaneous demonstrations used for other
tests, or part of the trial and error process, that
were not present for the final results, were also
kept. These include the recording of demon-
strations with a starting random rotation (more
on this in Experiments) and different batches
of demonstrations with haptic feedback.

Instructions on how to use the project and its
VE can be found in the readme file present on the
GitHub repository.

3.4. Neural Network
To be able to replicate an action based on pro-
vided examples some form of machine learning
is needed. Various methods are able to perform
such task, but, considering the data size of our
demonstration (to be able to completely capture
the human hand we will use 20 variables - 4 for
the quaternion angle, 3 for the position, and 13 for
the finger joints, and this using some shortcuts to
eliminate redundancy) a NN presents itself as the
best and most commonly used method.

NN on itself is a diverse method, from which
two main types emerge: feedforward NN, that from
a set of entry parameters return an output, com-
monly used in classification problems, and recur-
rent NN, that are similar to feedforward NN but also
possess a loop that allows information from previ-
ous iterations to affect the current outcome, making
the NN have a sort of funtional memory.

With this in consideration it is now important to
understand what we want to achieve with the NN.
The training consists of a sequence of iterations
that describe the execution of a task and from
the NN we want that, through some information of
the current state/iteration, we can obtain the next
state/iteration. This implies that the NN input is the
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information of the current state and the output is
the next state.

As previously mentioned we are going to use an
LSTM, a type of recurrent NN, as these are more
suited for sequential tasks, that has an input and
output of the size of a iteration, and that by be-
ing recurrently called, creates a sequence of states
that represent a reproduction of the task, if suc-
cessful.

3.4.1 LSTM Structure

As previously mentioned the demonstrations were
segmented into two phases. To reflect this two
LSTMs are also used, one being trained for the
reaching phase and another for the manipulation
phase. Although used for separate segments the
LSTMs share the same structure, differentiating
in the trained data and the information used as a
starting condition (more on this later).

The LSTMs contain just 3 layers, the input layer
with 20 nodes (the data size of an iteration), an
output layer of the same size (as the output will be
the iteration to use next as an input to the LSTM),
and an intermediate layer of size 3280 (8*size of
input*size of output + 4*size of input, rule of thumb
of number of intermediate nodes recommended for
NNs with multiple inputs). The optimizer is adam
using the mean squared error to calculate the loss,
i.e. the estimation or prediction error. This opti-
mizer and error function were chosen as they are
one of the recommended for NNs with multiple in-
puts. Other loss functions were tested but proved
to be less reliable, being slower or, in most cases,
having difficulty stabilizing.

To initialize the LSTM the C0 (initial cell state)
and h0 (initial previous iteration) are defined by a
rectified unit activation function (creates a vector
of the max value or zero, whichever is bigger, for
every value).

As we are working with an LSTM, a NN that
has short-term memory, the input is actually mul-
tidimensional, that is, it processes, in our case, 10
iterations at a time, from which it will try to predict
the 11th one. We chose 10 as the short-term mem-
ory range as it represents 2 seconds of demonstra-
tion, and this seemed a sensible value and proved
to carry enough information for a reproduction to
be made. It was also tested a range of 5 iterations
(1 second of demonstration) but the reproductions
had a harder time performing the tasks (most of
the reproductions ended up switching between two
positions or stabilizing in space, as in 1 second of
demonstration there wasn’t enough movement, so
a good prediction of the following movement was
to keep still).

Referring to the training the data is first treated

by scaling the demonstrations values to values that
can be processed by the LSTMs, that is, values
from 0 to 1. To do so, a scale was chosen based
on the values present on the demonstrations. For
example, the fingers’ joints were read as integers
from 0 to 1000, and the angles, being a quaternion,
would always be found between -1 and 1. For the
spatial position, being it relative, a script was made
to indicate the max and minimal value present in
the demonstrations. Having a scale defined, the
demonstrations values could be converted to val-
ues between 0 and 1 through simple math.

Afterwards the demonstrations were segmented
in groups of 10 successive iterations and the
11th following so the LSTMs could process them.
The full collection of groups taken from all the
recorded demonstrations were inputed as train for
the LSTMs for an undefined number of epochs (an
epoch represents the training of the full set of train-
ing data). To ascertain when to stop training, the
loss was read at the end of each epoch, and when
the loss stabilized the training process ended. To
have a perception of the training time, the train-
ing of both networks needed for each task takes
about 24h to 36h to complete on the used com-
puter (to compare, the computer specs are: CPU:
Intel i7-7700HQ 2.80GHz, GPU: NVidia GeForce
GTX 1050, RAM: 16GB, even though the program
only uses a little more than 1GB of RAM. CUDA
drivers and SDK were present to allow the network
to take advantage of GPU resources).

Having the LSTMs trained for a task they are
now ready to perform reproductions. To do so the
reaching LSTM needs 10 values to start recurrently
predicting the following ones. This starting point
can be chosen by hand, but to test we performed
a similar procedure to the one commonly seen in
simpler NNs tests, in which we reserve a portion of
the training data as validation data, and then use
the first 10 iterations of these demonstrations as
the starting point for the reproduction. This was
done to ensure the reproductions start at a plausi-
ble starting position.

While an LSTM is outputing recurrently the next
iterations it is simultaneously sending these values,
unscaled to the real values using the inverse of the
scale previously defined, to the VE, that has the
hand following the received values. After receiving
a value the VE sends back the values that it has
actually placed the hand in. This will be the same
values that it has received, with the exception of
when the hand pushed the object in the current it-
eration. The LSTM will receive the real position,
scale it, add to the stack, and predict the next one.
The iteration outputs are limited to sending one ev-
ery fifth of a second, to make the hand move at the
speed it was recorded to.
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To make the Python based program that runs
the LSTMs communicate with the VE, in our case
a C# based software, in real time, offline ports
were used. To do so an unoccupied port was used
(56000), and both the Python program and the VE
have a sender and receiver using this port, from
which they send back and forth 21 floats (20 rep-
resenting an iteration and a final one used as a
boolean flag, to be explained next).

At a certain moment/iteration the object will
be considered grabbed and the VE will send a
boolean flag indicating such. The Python program,
receiving this flag, will exchange the reach LSTM
for the manipulation LSTM, as we are now on the
second phase, being this one that will output the
next predictions until the end of the reproduction.

To define the initial states for the manipula-
tion LSTM some alternatives were done along the
work, but the final version defined it by saving the
value of the first manipulation iteration and the last
reach iteration and having for the initial state the
last 9 reach iterations, subtracted by the last reach
iteration and summed by the first manipulation it-
eration, and the first manipulation iteration, making
a continuous sequence that is near to what would
be read if the iterations previous to the manipu-
lation portion, using the manipulation referential,
were saved.

4. Equipment
To be able to interact with the VE some peripherals
will be needed, in particular a glove with sensors
so the user can interact with the environment. It
will also be needed software to host the VE and
run the NN.

The used glove was the VMG35-Haptic (figure
7(a)), made by Virtual Motion Labs. This glove
possesses 2 gyroscopes, one on the hand and
another on the wrist, to indicate the angular po-
sition of the hand, sensors that measure the bend
of finger joints and palm (figure 7(b)) and vibrating
plaques on the tip of each finger to permit haptic
feedback.

The VE will be hosted in Unity v2019 and the
LSTMs will be made using Tensorflow.

5. Experiments
To verify the quality of our work a collection of
tests was made. Although they came with var-
ied purposes, from testing the overall quality of the
method to testing the differences of including or not
haptic feedback, most of them followed the same
process.

First, from 200 demonstrations of a task, 180 of
these demonstrations were used to train the NNs
and the remaining 20 for testing purposes to use
later. It was also tested the use of less demonstra-
tions (100), but as the results were shown to be

(a) VMG35-Haptic
Glove

(b) Sensors on the
glove (light blue -
sensors, dark blue
- sensor reading
directions)

Figure 7

way less consistent, 200 demonstrations was the
value used for training. For comparison with other
works 200 demonstrations rounds to about 40 min-
utes of demonstrations.

Afterwards, having the NNs completely trained,
of the 20 testing demonstrations one is chosen and
the first 10 iterations of it are used as a plausible
start for the task. The NN will then try to predict
the next iteration, and, doing so recurrently, create
a sequence of iterations that will, hopefully, recre-
ate the task at hand. The successfulness of the
reproduction is verified on the VE, which has the
virtual hand following the values outputed by the
NNs.

The success of a reproduction is considered so
when the goal of the task is achieved (the ham-
mer is placed on the shelf, the can is rotated and
placed in the box, etc.). After using the 20 starting
positions the result consists on the percentage of
successful reproductions. It should be noted that
during the tests the object still spawns at a random
position, to make both NNs having to deal with not
directly trained starting positions.

5.1. Quality of Reproductions
The first experiment to be made is to simply test the
method by trying to reproduce a number of tasks.
The tested tasks were: grab an hammer and place
it on a shelf (Figure 8(a)), grab a bottle and place it
on a base (Figure 8(b)), grab a can, rotate it side-
ways, and drop it on a box (Figure 8(c)), grab a
knife and place it on a base (Figure 9(a)), grab a
mug and bring it to a base (Figure 9(b)) and grab a
cube and place it on a square slot (Figure 9(c)).

The success rate of the reproductions can be
found in the graph 10.

In general results were good, considering the
common values for this kind of work, showing the
plausibility of our method.

In particular we have the cube task on the low
side of the results. This was somewhat expected
as from all the tasks it’s the one with less error tol-
erance, as the task is only considered successful
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(a) Hammer
task

(b) Bottle
task

(c) Can
task

Figure 8: Performed tasks 1

(a) Knife
task

(b) Mug
task

(c) Cube
task

Figure 9: Performed tasks 2

Figure 10: Success Rate of the different reproduced tasks

if the cube is placed inside a slot only slightly big-
ger than the cube itself (for example, some of the
failures ended with the cube resting slightly on the
side or below the slot).

5.2. Rotation Tolerance
The demonstrations and reproductions were done
with random starting positions so we’re aware that
our method has position tolerance, but the case
that the object starts slightly rotated, or the read-
ing of the object rotation is not well measured and
presents a slight deviation, should also be consid-
ered.

Initially, to test for the rotation variation, we made
a new batch of demonstrations that made the ob-
ject not only appear in a random position, but also
with a random rotation (up to ±10º and up to ±20º,
two sets were recorded).

After testing the method trained with these new
demonstrations (having the tests also rotating the
objects at the start) the results, right from the start,
showed a very low success rate, rounding to about
15%, for both the ±10º and ±20º sets. From obser-
vation of the failures we could see that at the start
of the reproductions the hand rotated excessively
to fit to the object, leading to not being able to grab
the object with its excessive rotation, or grabbing
it from an uncomfortable position, not trained for,
and not being able to correctly continue with the

task. We believe that this was due to the LSTMs
normal behaviour of trying to linearize the move-
ment and also to the fact that we didn’t simply just
made the task more varied, but actually added a
new phase (of rotating the hand before starting
the task), which led to an increase of difficulty for
the task. Another aspect that might justify these
bad results is that with the added variance the 200
demonstrations were no longer enough to encom-
pass the full range of possibilities, needing more to
fully capture the new combinations of rotations and
positions.

To contour this problem we considered to, in-
stead of training with the rotated object, to sim-
ply use the method previously trained with the ob-
ject with no starting rotation variance, and test
nonetheless with the object spawning with random
rotations, leaving the method to try to deal with the
shift in rotation. Also to note that the glove, when
connected at the start of each demonstration, also
starts with a slight variation of its angular position,
so, as we’re using the relative position, the training
with the object starting with a static rotation natu-
rally includes a slight variance in its angular posi-
tion.

The success rate of the reproductions, for ±10º
and ±20º, and the previous default 0º values, to
help compare, can be found in the graph 11.

Figure 11: Success Rate of the tasks with different initial rota-
tions

The results were what was to be predicted, the
method lowers its success rate as more variance is
added to it. The can task presents itself as an ex-
ception, having a increase in success rate at ±20º,
probably due to the innate randomness of the test-
ing process. From comparison we can also see
that the hammer and cube task are less tolerant to
the rotation variance, which is most likely due to the
fact that these tasks are dependent on the rotation
of the object, unlike the others (the cube and the
hammer might not fit in their target base if placed
tilted). This leads to another point, that some ob-
jects, as the bottle and the can, were tested of their
rotation tolerance but, being symmetric in nature,
their rotation is irrelevant and don’t make the task
different. Nonetheless the tests to these objects
prove tolerance to reading errors.
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Also to note, in comparison with the previous
method of training with rotation variance demon-
strations, the reproductions in these tests were
more fluid and smooth, having the hand rotating
linearly while reaching the object or base.

In conclusion, the method proved to be capable
of dealing with some variance of rotation, albeit at
a lower success rate.

5.3. Haptic Feedback Inclusion
As a final test, considering that for all the recorded
demonstrations we had the gloves using haptic
feedback, it would be of interest to test if the inclu-
sion of the haptic feedback actually leads to better
demonstrations, as it is in the recommended next
steps of a number of works in this area.

To test this first we did the most obvious, record
again the demonstrations but without the use of the
haptic feedback. For this the all the previous tasks
were re-recorded, used for training of the LSTMs,
and finally, tested. The results of these tests can
be seen in the graph 12.

Figure 12: Success Rate of the tasks with and without haptic
feedback

As we can observe the exclusion of haptic feed-
back lead to slightly worse reproductions. Some
of the tasks deviated more from the average, as
the knife which managed to perform better without
haptic feedback and the mug which performed es-
pecially poorly. Besides the natural randomness
present in the recording of demonstrations and the
testing of reproductions, some justifications for the
pecularity of results of this tasks are that the knife,
having a small handle and as all the grasps made
are precision grasps (the object is grasped by the
tip of the fingers) is is easier to rely only on visual
aid to perform this task, and the mug, as it ob-
structs the view of the fingers, the haptic feedback
might have a bigger weight.

Having the results of the presence of haptic feed-
back we also took advantage of these results to
test the quality of a commonly used metric to eval-
uate the quality of grasps, the force closure.

Force closure is a boolean property of grasps
that verifies if the grasp is good enough to sustain
any perturbation and, as such, can be used to as-
certain the quality of a grasp [1].

To verify if a grasp is a force closure we used
the theorem that affirms if the convex hull of
the torques includes the center, then the grasp
presents force closure. To verify this in Unity we
grab the object and register each point of contact
and the normal of this point of contact of the ob-
ject to calculate the torque of each (the torque is
calculated as the external product of the inverse
normal, representing the contact force, and radius,
that is a vector that goes from the center of the ob-
ject to the contact point). Afterwards, to simulate
friction, a cone of friction is created and, having
it centered on each normal and obtaining from its
surface 4 equidistant friction normals, use all these
normals to calculate torques. After registering all
the torques of a grasp on a text file we use QHull,
a convex hull software that receives vectors and
outputs information of the convex hull created by
them, including the vertexes of the convex hull. By
inserting all the torques of a grasp and the center
(0,0,0,0,0,0) we can verify if the center is contained
by its vertexes, because if the center is not a ver-
tex it implies the center is inside the polygon that is
the convex hull and, as such, the inputed grasp is
a force closure.

To test the quality of the haptic feedback using
the force closure property we grabbed objects on
the VE and saved the torques to later verify if the
property is present. 100 grasps of varied objects
were saved with the haptic feedback turned on
and another 100 grasps on the same objects were
saved with the haptic feedback turned off. The per-
centage of grasps considered force closures can
be seen in the Table 1. The table also includes
the previous average success rate as a means of
comparison.

With Haptic
Feedback

Without Haptic
Feedback

Success
Rate 77% 70%

Force
Closure 77% 78%

Table 1: Percentage of successes by trying to reproduce tasks
and percentage of force closure grasps measured

As we can observe, according to the force clo-
sure results, the presence of haptic feedback has
no weight in the quality of the grasps, although
according to our previous results haptic feedback
lead to better reproductions. To note that even
though the force closure tests only affect the grasp,
ignoring if a task is being done or if the object
is simply being grasped, the haptic feedback only
aids on the grasp portion of the tasks and, as such,
the fact that in the force closure tests no tasks were
done should have no bearing on the results.

From this we can conclude that although force
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closure can indicate some value of the quality of
a grasp, it does not directly implicates the general
quality of a grasp, nor of the task the grasp is pre-
sented in. One justification for this is that the force
closure does not measure finger penetration, as
observed by M.Chessa [3], as the contact point is
assumed as the point of entry of the finger, leading
to an overlook of an aspect that might influence the
quality of a grasp.

In conclusion, as commonly suggested in previ-
ous works we can now conclude that haptic feed-
back does actually influence the quality of demon-
strations, albeit slightly.

6. Conclusions
In this work we developed a VE consisting of a ta-
ble with a number of objects to interact with, for
the purpose of demonstrating simple tasks, using
a glove with sensors to interact with it. These
demonstrations were meant to be used as a guide
to teach robots to perform the same grasping tasks
as we humans, through a approach often called im-
itation learning, a common approach to machine
learning that uses the human example as a basis
to teach elaborate tasks to robots. We also took
the opportunity to test the common notion that the
use of haptic feedback leads to better demonstra-
tions and, by consequence, better reproductions.

To export the knowledge present on our demon-
strations we used NNs, in particular LSTMs, a
memory based NN, that received as training the
recorded demonstrations. As a novel approach we
segmented the demonstration in 2 phases, before
and after the object is considered grasped, to en-
sure we have a firm grasp before moving on with
the reproduction.

After testing some reproductions, starting with
varied starting positions, we could confirm that our
method is capable of reproducing trained manipu-
lation tasks for a complete dexterous hand, even
when some untrained variance is introduced.

Also, as previously mentioned, the quality im-
provement created by the use of haptic feedback
was tested, and it was observed that its inclusion
made the reproduction just slightly better.

Finally, for anyone who wants to test
their own grasping methods the VE and
recorded demonstrations are freely available
at https://github.com/alexamor/Thesis.

6.1. Next Steps
We think it would be of interest to create a method
to transfer this model to a real life robot, as some
demonstrations were even recorded using a robot
hand replica.

Other more simple improvements that could be
added or tested are to have better immersion, us-
ing a Virtual Reality Headset for example, and cre-

ate more elaborate tasks, using malleable objects,
for example.
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